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From waves to avalanches: Two different mechanisms of sandpile dynamics
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Time series resulting from wave decomposition show the existence of different correlation patterns for
avalanche dynamics. For tlie= 2 Bak-Tang-Wisenfeld model, long range correlations determine a modifica-
tion of the wave size distribution under coarse graining in time, and multifractal scaling for avalanches. In the
Manna model, the distribution of avalanche coincides with that of waves, which are uncorrelated and obey
finite size scaling, a result expected also for the3 Bak-Tang-Wiesenfeld sandpile.

PACS numbes): 45.70.Ht, 05.45.Tp, 05.6%b, 64.60.Ak

Full information on a self-organized criticd6OQ pro-  other hand, our results suggest validity of a scenario identical
cesd 1] is contained in the time series, if the time step is theto the M one, and lead to conjecture exact avalanche expo-
most microscopic conceivable. The self-similarity of such anents coinciding with those of the wave PDF.
process, due to its intermittent, avalanche character, should The 2D BTW[1] is defined on a squatex L lattice. An
be revealed by the scaling of the time autocorrelation or itdntegerz;, the number of grains, is assigned to sit8tarting
power spectrum. In spite of this, time series analyses hav#0om a stable configuratiorg(<z.=4, Vi), a grain is added
been seldom performed on sandpiles or similar systems, aréf & randomly chosen site, after each addition, all sites ex-
mostly concerned the response to finite, random external digeeding the stability threshold;>z., undergo toppling,
turbances, i.e., the problems of hbise[2]. Most efforts in  distributing one grain to each one of the nearest neighbors.
the characterization of SOC scaling concentrated on problhe topplings, which dissipate grains when occurring at the
ability distribution functions PDF’s) of global properties of ~edges, continue until all sites are stable, and a new grain is
the avalanche events, which occupy large intervals of th@dded. Thes topplings between two consecutive additions
microscopic evolution timé3]. The numerical analysis of form an avalanche. After many additions, the system orga-
such PDF’s is often difficult, and universality issues cannothizes into a stationary critical state.
be easily solved. The situation is even more problematic if, Manna[5] studied a two-state versioh, of the sandpile.
like for the two-dimensional(2D) Bak-Tang-Wiesenfeld The sites can be either empty or occupied; grains are added
sandpile(BTW) [1], the usually assumed finite size scaling randomly, and when one of them drops onto an occupied
(FSS form reveals inadequate for the PDF'’s, and needs to béite, a “hard core” repulsion pushes two particles out to
replaced by a multifractal onjt]. These findings raise the randomly chosen nearest neighbors. Compared to the BTW,
additional issue of why the 2D BTW displays such multifrac-in Which toppling is deterministic, this model has an extra
tal scaling, while apparently very similar sandpiles, like thestochastic ingredient in the microscopic evolution, apd
Manna modelM) [5], do not[4,6,7]. =1

In recent theoretical approaches to the BTW and other One can define a special ordering in the topplings of the
Abelian sandpile$8], a major role has been played by the BTW by introducing the wave decomposition of avalanches
waves of toppling into which avalanches can be decompose®]. After the site of addition(, topples, any other unstable
[9]. For the BTW, the PDF’s of waves, as sampled from asite is allowed to topple except possilily This is the first
large collection of successive avalanches, obey FSS with exvave of topping. IfO is still unstable, it is allowed to topple
actly known exponentgL0]. By analyzing the succession of once again, leading to the second wave. This continues until
waves as a stationary time series, one could hope to dete® becomes stable. Thus, an avalanche is broken into a se-
mine the statistical properties of avalanches. However, sguence of waves. During a wave, sites topple only once, and
far, no precise information on the correlations of such seriefor an mwave avalanche=X;',s,, wheres, are the top-
has been obtained. plings of thekth wave. Following the definitions for the

In this Rapid Communication we generalize the wave deBTW, we implement here a wave decomposition of ava-
scription to theM in 2D. The study of the respective wave lanches also for th®l. Unlike for the BTW, sites involved in
time series reveals that BTW arM are prototypes of two a wave may topple more than once. Furthermore, the topping
very different scenarios for avalanche dynamics. In the order chosen implies now a peculiar sequence of stable con-
case, successive wave sizes are totally uncorrelated. Asfi@gurations visited upon addition of grains, but the realization
conseqguence, avalanche and wave PDF’s have identical scglirobabilities of possible configurations are independent of
ing properties, consistent with FSS. For the BTW, to thethis order[8].
contrary, wave sizes show long range correlations and per- The BTW wave size PDF has FSS form,(s)
sistency in time. These correlations are shown to be respor-s~ wp,,(s/LPw), with r,,=1, D,,=2 in 2D, andp,, a suit-
sible for the fact that avalanche scaling differs from the waveable scaling functiof9,10]. For theM waves we also found
one and has multifractal features. For the 3D BTW, on thea PDF obeying FSS, with,,=1.31+0.02 andD,,=2.75
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FIG. 1. For the BTW model, ak grows, C decays more and
more slowly (=128,256,512,1024,2048 from left to rightC(t FIG. 2. Dashed curve interpolates(q) for 1<q<4; it has
<1L)=0 for theM (inse. slopeD=1.02 and intercept 0.62. The inset shows semilogarithmic

plots of (t9), vs log L for q=—1,-0.5.
+0.01. These exponents are remarkably consistent with
those estimated for avalanchés6]. Such a coincidence cer-
tainly does not apply to the BTW. Attempts to derive exact (19, = > C(t,L)t9~Loe, )
BTW avalanche exponents within FSS were based on the !
observation that often waves within an avalanche show ggg would imply the piecewise linear form
final, long contraction phase, and on a scaling assumption for
the corresponding,— s, 1 [11]. A more adequate ansatz for D.(q—7.+1) if g=7.—1
the conditional PDF o, , ; givens, [12], and Markovianity o.(q)= 0 it g<r—1
assumptions, did not help in better characterizing avalanche 4=

scaling along these lind4.3]. In fact the 2D BTW obeys a Figure 2 shows the extrapolated.(q), which has an ap-
multifractal form of scaling, which is not caught by such proximately linear part for £q=<4, consistent withD,.
simplified scheme$4]. _ _ _ =1.02+0.05 andr,=0.40*+0.05. The curvature fog<1 is
The wave time seriefs,} provide coarse grained dynami- que to the fact that, for finite, a logarithm ¢.=0) cannot
cal descriptions. In thé.—o limit, these descriptions are pe easily distinguished from a power law with=0. The
infinitely rescaled with respect to those at microscopic timenset of Fig. 2 shows this logarithmic growth oy, . We

scale, but still infinitely finer than the mere records of suc-;gnclude that. for the BTW. a simple power law tail
cessive avalanche sizes. This intermediate time scale revee&s(t ©)~t" ", is a first, rough, approximation. The incre-

essential in order to understand the dynamics inside V3henty(t) =L _,s, is comparable to the trail of a fractional

lanches, whose size sequence we found to be uncorrelated ¢ ownian motion with Hurst exponer = (2— r)/2 [15]

the sense discussed below for waves. The microscopic scale, .1 ihatH = 0 80+ 0.03 for the BTW.H can becmeasur’ed

gave no significant results in comparing the two modelsdirectly from the fluctuation

since, at that level, similar strong correlations exists in both

of them, due to the parallel updating algorithm. F(t,L)=[(Ay(1)®) —(Ay(t)) 2", (5)
We determined for BTW ani¥l the autocorrelation

4

with Ay(t)=y(k+t)—y(k) [15], which should scale as

<Sk+t5k>L—M2 F(t,©)~t". Figure 3 reports tests of this scaling fbr

CtL)=— > (1)  =2048. For the BTWH~0.85 at lowt, in agreement with
(SigL—m 7.=0.40£0.05. A crossover tdl=1/2 is observed for large

_ ) ~t. The crossover time of course increases withH=1/2
with t=1,2,..., andu=(sy)_, the time averages being corresponds to a process withexponentially decaying with

taken over up to 10waves forl =128, 256, 512, 1024, and t, or with C(t,) =&, ,, as is the case for thil. Thus, the
2048. A first, striking result is that, as soon @50  crossover is due to the fact that, beyond the maximal time
[C(O.L)=1 by normalizatioth waves are uncorrelated in the duration of avalanches, waves are uncorrelatéd.1/2 im-
M. Indeed, as grows,C manifestly approaches 0 as soon asplies long range correlations, as we find for the BTW. Fur-
t>0 (Fig. 1. To the contraryC is long range for the BTW, thermore,H>1/2 corresponds to persistency: an increasing
because it approaches 0 only foexceeding the maximum o decreasing trend of in the past mostly implies a similar
number of waves in an avalanctféig. 1), which we found to  tendency in the future. This accounts for the observed expan-
scale~L, for L—«. For the BTW we further tested the FSS sion and contraction phases in avalanche gr({\ﬂlﬂj
form The BTW has been shown to display a nonconstant gap in
the highg moments of some avalanche PDIF. Thus, it
C(t,L)=t""eg(t/LP) (t,L>1), (2)  should not surprise if, unlike assumed in Hé¢), also C
would manifest similar multifractal properties. Indeed, a
on the basis of thé& — o scaling of the momentsl4,4] more accurate analysis shows that, for highthe gap
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FIG. 3. Plots ofF(t,L=2048) for the BTW(continuou$ and FIG. 4. o o(q) for the BTW,n=1, 8, 24(open circles, from the

the M (dashed, slope0.5). bottom). The closed circles show(q).
do:(q)/dq grows slowly withg, beyond the above estimate
of D.. This multifractal character can be embodied in theP(z)(L“J-):J d(LP)Py(L* =LA L)Py (LA L)~ L w® e,
more general scaling ansdi] (8)
Clt=LoL)=L®™ (L>1), ®  Thus, also the spectrum associated v (s,L), which is
the convolution ofn P,’s, does not depend om This im-
cP”eS the n-independence otrg ,(q), which is determined
oncef,, is given. Now, letP(s,m,L) be the probability of
having an avalanche with topplings andm waves: due to
the uncorrelated character of different wave sizes, foMhe
P(s,m,L) is also the convolution ofm PR,’s, i.e.,
P(s,m,L)
=PM(s,L). Therefore, ifP(m,L) is the PDF of the total
0tﬁumber,m, of waves in an avalanche, one has

with a nonlinear singularity spectrunf,>—c in an
a-interval covering the whole range of possible gaps an
linked to o by Legendre transfornC would satisfy the FSS
ansatz(2) only if f. were a linear function, i.e.f.(«)
=—(7.—1)a if ae[0D], fc(a)=—0c otherwise. The
FSS picture given above is in fact only an approximation.
This explains also the slight curvature of thelot for low t,
which makes the direct measurementrbambiguous(Fig.
3). Rather than attempting a more precise determination
o. and f;, below we clarify the difference between BTW
and M, and the origin of multiscaling in the former, in the p(s,L)zz PM(s,L)P(m,L), (9)
light of probabilistic concepts. m

Waves have a relatively simple behavior. So, in a renor-
malization group(RG) spirit, we can coarse grain the time, such that
by looking at the PDFP("(s,L), of the sum of the sizes of
n consecutive waves, regardless of the avalanche they belong (@) oo (@)
to. Since avalanches are constituted by an infinite number Losd ”% Losm@P(m,L), (10)
[16] of waves forL—«, by sending alsm—~, we expect
P to approach the PDF of avalanche sizes as a RG ﬁxeg{/hich
point. This approach can be monitored on the basis of the. '
effective moment scaling exponents defined by

together with the above results, imply,(q)
o4(g). The coarse graining of waves in tihé does not
modify the block PDF spectrum, which is from the start at its
fixed point, representing also the scaling of avalanches.

In the BTW case, the nontrivial composition of correlated
waves is responsible for the change witlof the effective
singularity spectrum oP("™ (Fig. 4). For n=1, the simple
For theM, os,(q) does not depend on, and, within our linear FSS formf,(a)=—(n,—1)a(ac[0D,]) applies,
accuracy, is equal from the start tog(q), such that while for n—o one should recover the nonlinear form
fdsgP(s,L)~L7® with P(s,L) representing the ava- needed to describe the complex scalingRif,L) [4]. In
lanche size PDF. To the contrary, in the BTW, @&adn- practice, sampling limitations prevent us from reaching very
creasesg, () varies and moves gradually towards the ap-high n. However, even if convergence is relatively slow, the
propriatecs(q) (Fig. 4). tendency ofos ,(q) to move towardsr¢(q) is very manifest.

The result for theM can be explained on the basis of the We could clearly detect the increase withof the gap
fact that PDF's of independent variables, satisfying a scalinglos ,(q)/dq, at fixed highg: for example, we determined
ansatz of the typg6), have a spectrum which does not do,(4)/dg=2.00,2.20,2.25,2.38, far=1,8,12,24, respec-
change under convolutiofil7]. For example, if we put tively. Furthermore, while the asymptotic gap fBy,(s,L)
Pu(s=L%L)~LW@ = wheref, is the spectrum of the gets readily to the maximum value, i.€g4(q)/dg=2 for
wave size PDF, one can verify that g=1, as soon ag>1 a constant gap could not be detected

<Sq>n,L:f dsgIPM(s,L)~Lsn(®, 7)
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for o5 ,(0); this confirms the progressive appearance of efapproaches to avalanche scaling should be naturally based on
fective multifractal scaling for the block variable. a correct understanding of the link with waves, wherever
As the above discussion shows, the mere fact that wavegiey can be defined. In such a perspective, our results already
in the M can have multiple topplings like avalanches, is notgive novel insight into the BTW in 3D. Unlike its 2D coun-
enough to ensure that wave and avalanche scalings are iderpart, this model has avalanches constituted by a finite av-
tical. There is an infinite average number of waves per avagrage number of waves far—c. Since, as we found, wave
lanche in thel. —< limit. Thus, if also for theM the auto-  correlations cannot propagate outside the same avalanche,
correlationC would be long range, this identity would not be ;g suggests that they are, if nélike as in theM, at most
guaranteed. _short range. According to our results, one should then expect
In summary, the above SOC models present two radically, g a\ajanche size distribution to scale with the same exactly

different time correlation p"".“emS' WhiF:h should be Proto- nown exponents as the wave one. Indeed, numerical deter-
typical for avalanche dynamics. In tih different waves are minations for the BTW in 3D are strikingly compatible with

always uncorrelated, even within the same avalanche. Thu is conjecturg10]
the PDF of wave sizes, satisfying FSS, coincides with that o J ’
avalanche sizes, as far as exponents are concerned. To theywe thank C. Tebaldi and C. Vanderzande for useful dis-

contrary, in the BTW long time correlations substantially ¢ssjons. Partial support from the European Network Con-
modify the scaling of waves under coarse graining, determing.,~t+ No. ERBEMRXCT980183 is acknowledged.
ing also a multifractal avalanche distributiftB]. Successful
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