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From waves to avalanches: Two different mechanisms of sandpile dynamics
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Time series resulting from wave decomposition show the existence of different correlation patterns for
avalanche dynamics. For thed52 Bak-Tang-Wisenfeld model, long range correlations determine a modifica-
tion of the wave size distribution under coarse graining in time, and multifractal scaling for avalanches. In the
Manna model, the distribution of avalanche coincides with that of waves, which are uncorrelated and obey
finite size scaling, a result expected also for thed53 Bak-Tang-Wiesenfeld sandpile.

PACS number~s!: 45.70.Ht, 05.45.Tp, 05.65.1b, 64.60.Ak
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Full information on a self-organized critical~SOC! pro-
cess@1# is contained in the time series, if the time step is t
most microscopic conceivable. The self-similarity of such
process, due to its intermittent, avalanche character, sh
be revealed by the scaling of the time autocorrelation or
power spectrum. In spite of this, time series analyses h
been seldom performed on sandpiles or similar systems,
mostly concerned the response to finite, random external
turbances, i.e., the problems of 1/f noise@2#. Most efforts in
the characterization of SOC scaling concentrated on p
ability distribution functions~PDF’s! of global properties of
the avalanche events, which occupy large intervals of
microscopic evolution time@3#. The numerical analysis o
such PDF’s is often difficult, and universality issues can
be easily solved. The situation is even more problematic
like for the two-dimensional~2D! Bak-Tang-Wiesenfeld
sandpile~BTW! @1#, the usually assumed finite size scalin
~FSS! form reveals inadequate for the PDF’s, and needs to
replaced by a multifractal one@4#. These findings raise th
additional issue of why the 2D BTW displays such multifra
tal scaling, while apparently very similar sandpiles, like t
Manna model~M! @5#, do not@4,6,7#.

In recent theoretical approaches to the BTW and ot
Abelian sandpiles@8#, a major role has been played by th
waves of toppling into which avalanches can be decompo
@9#. For the BTW, the PDF’s of waves, as sampled from
large collection of successive avalanches, obey FSS with
actly known exponents@10#. By analyzing the succession o
waves as a stationary time series, one could hope to d
mine the statistical properties of avalanches. However,
far, no precise information on the correlations of such se
has been obtained.

In this Rapid Communication we generalize the wave
scription to theM in 2D. The study of the respective wav
time series reveals that BTW andM are prototypes of two
very different scenarios for avalanche dynamics. In theM
case, successive wave sizes are totally uncorrelated. A
consequence, avalanche and wave PDF’s have identical
ing properties, consistent with FSS. For the BTW, to t
contrary, wave sizes show long range correlations and
sistency in time. These correlations are shown to be resp
sible for the fact that avalanche scaling differs from the wa
one and has multifractal features. For the 3D BTW, on
PRE 621063-651X/2000/62~4!/4528~4!/$15.00
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other hand, our results suggest validity of a scenario ident
to the M one, and lead to conjecture exact avalanche ex
nents coinciding with those of the wave PDF.

The 2D BTW@1# is defined on a squareL3L lattice. An
integerzi , the number of grains, is assigned to sitei. Starting
from a stable configuration (zi<zc54, ; i ), a grain is added
at a randomly chosen site, after each addition, all sites
ceeding the stability threshold,zk.zc , undergo toppling,
distributing one grain to each one of the nearest neighb
The topplings, which dissipate grains when occurring at
edges, continue until all sites are stable, and a new grai
added. Thes topplings between two consecutive additio
form an avalanche. After many additions, the system or
nizes into a stationary critical state.

Manna@5# studied a two-state version,M, of the sandpile.
The sites can be either empty or occupied; grains are ad
randomly, and when one of them drops onto an occup
site, a ‘‘hard core’’ repulsion pushes two particles out
randomly chosen nearest neighbors. Compared to the B
in which toppling is deterministic, this model has an ex
stochastic ingredient in the microscopic evolution, andzc
51.

One can define a special ordering in the topplings of
BTW by introducing the wave decomposition of avalanch
@9#. After the site of addition,O, topples, any other unstabl
site is allowed to topple except possiblyO. This is the first
wave of topping. IfO is still unstable, it is allowed to topple
once again, leading to the second wave. This continues u
O becomes stable. Thus, an avalanche is broken into a
quence of waves. During a wave, sites topple only once,
for an m-wave avalanches5(k51

m sk , wheresk are the top-
plings of the kth wave. Following the definitions for the
BTW, we implement here a wave decomposition of av
lanches also for theM. Unlike for the BTW, sites involved in
a wave may topple more than once. Furthermore, the topp
order chosen implies now a peculiar sequence of stable
figurations visited upon addition of grains, but the realizati
probabilities of possible configurations are independent
this order@8#.

The BTW wave size PDF has FSS formPw(s)
;s2twpw(s/LDw), with tw51, Dw52 in 2D, andpw a suit-
able scaling function@9,10#. For theM waves we also found
a PDF obeying FSS, withtw51.3160.02 andDw52.75
R4528 ©2000 The American Physical Society
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60.01. These exponents are remarkably consistent
those estimated for avalanches@5,6#. Such a coincidence cer
tainly does not apply to the BTW. Attempts to derive exa
BTW avalanche exponents within FSS were based on
observation that often waves within an avalanche show
final, long contraction phase, and on a scaling assumption
the correspondingsk2sk11 @11#. A more adequate ansatz fo
the conditional PDF ofsk11 givensk @12#, and Markovianity
assumptions, did not help in better characterizing avalan
scaling along these lines@13#. In fact the 2D BTW obeys a
multifractal form of scaling, which is not caught by suc
simplified schemes@4#.

The wave time series$sk% provide coarse grained dynam
cal descriptions. In theL→` limit, these descriptions are
infinitely rescaled with respect to those at microscopic ti
scale, but still infinitely finer than the mere records of su
cessive avalanche sizes. This intermediate time scale rev
essential in order to understand the dynamics inside a
lanches, whose size sequence we found to be uncorrelat
the sense discussed below for waves. The microscopic s
gave no significant results in comparing the two mode
since, at that level, similar strong correlations exists in b
of them, due to the parallel updating algorithm.

We determined for BTW andM the autocorrelation

C~ t,L !5
^sk1tsk&L2m2

^sk
2&L2m2

, ~1!

with t51,2, . . . , andm5^sk&L , the time averages bein
taken over up to 107 waves forL5128, 256, 512, 1024, an
2048. A first, striking result is that, as soon ast.0
@C(0,L)51 by normalization#, waves are uncorrelated in th
M. Indeed, asL grows,C manifestly approaches 0 as soon
t.0 ~Fig. 1!. To the contrary,C is long range for the BTW,
because it approaches 0 only fort exceeding the maximum
number of waves in an avalanche~Fig. 1!, which we found to
scale;L, for L→`. For the BTW we further tested the FS
form

C~ t,L !5t2tcg~ t/LDc! ~ t,L@1!, ~2!

on the basis of theL→` scaling of the moments@14,4#

FIG. 1. For the BTW model, asL grows, C decays more and
more slowly (L5128,256,512,1024,2048 from left to right!. C(t
<1,L).0 for theM ~inset!.
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^tq&L5(
t

C~ t,L !tq;Lsc~q!. ~3!

FSS would imply the piecewise linear form

sc~q!5H Dc~q2tc11! if q>tc21

0 if q,tc21
. ~4!

Figure 2 shows the extrapolatedsc(q), which has an ap-
proximately linear part for 1<q<4, consistent withDc
51.0260.05 andtc50.4060.05. The curvature forq,1 is
due to the fact that, for finiteL, a logarithm (tc50) cannot
be easily distinguished from a power law withtc*0. The
inset of Fig. 2 shows this logarithmic growth of^tq&L . We
conclude that, for the BTW, a simple power law ta
C(t,`);t2tc, is a first, rough, approximation. The incre
menty(t)5(k51

t sk is comparable to the trail of a fractiona
Brownian motion with Hurst exponentH5(22tc)/2 @15#,
such thatH50.8060.03 for the BTW.H can be measured
directly from the fluctuation

F~ t,L !5@^Dy~ t !2&L2^Dy~ t !&L
2#1/2, ~5!

with Dy(t)5y(k1t)2y(k) @15#, which should scale as
F(t,`);tH. Figure 3 reports tests of this scaling forL
52048. For the BTW,H;0.85 at lowt, in agreement with
tc50.4060.05. A crossover toH51/2 is observed for large
t. The crossover time of course increases withL. H51/2
corresponds to a process withC exponentially decaying with
t, or with C(t,`)5d t,0 , as is the case for theM. Thus, the
crossover is due to the fact that, beyond the maximal ti
duration of avalanches, waves are uncorrelated.HÞ1/2 im-
plies long range correlations, as we find for the BTW. F
thermore,H.1/2 corresponds to persistency: an increas
or decreasing trend ofy in the past mostly implies a simila
tendency in the future. This accounts for the observed exp
sion and contraction phases in avalanche growth@13#.

The BTW has been shown to display a nonconstant ga
the highq moments of some avalanche PDF’s@4#. Thus, it
should not surprise if, unlike assumed in Eq.~4!, also C
would manifest similar multifractal properties. Indeed,
more accurate analysis shows that, for highq, the gap

FIG. 2. Dashed curve interpolatessc(q) for 1<q<4; it has
slopeD51.02 and intercept 0.62. The inset shows semilogarithm
plots of ^tq&L vs log2 L for q521,20.5.
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dsc(q)/dq grows slowly withq, beyond the above estimat
of Dc . This multifractal character can be embodied in t
more general scaling ansatz@4#

C~ t5La,L !5L f c~a!2a ~L@1!, ~6!

with a nonlinear singularity spectrumf c.2` in an
a-interval covering the whole range of possible gaps a
linked tosc by Legendre transform.C would satisfy the FSS
ansatz ~2! only if f c were a linear function, i.e.,f c(a)
52(tc21)a if aP@0,Dc#, f c(a)52` otherwise. The
FSS picture given above is in fact only an approximatio
This explains also the slight curvature of theF plot for low t,
which makes the direct measurement ofH ambiguous~Fig.
3!. Rather than attempting a more precise determination
sc and f c , below we clarify the difference between BTW
and M, and the origin of multiscaling in the former, in th
light of probabilistic concepts.

Waves have a relatively simple behavior. So, in a ren
malization group~RG! spirit, we can coarse grain the tim
by looking at the PDF,P(n)(s,L), of the sum of the sizes o
n consecutive waves, regardless of the avalanche they be
to. Since avalanches are constituted by an infinite num
@16# of waves forL→`, by sending alson→`, we expect
P(n) to approach the PDF of avalanche sizes as a RG fi
point. This approach can be monitored on the basis of
effective moment scaling exponents defined by

^sq&n,L5E dssqP~n!~s,L !;Lss,n~q!. ~7!

For theM , ss,n(q) does not depend onn, and, within our
accuracy, is equal from the start toss(q), such that
*dssqP(s,L);Lss(q), with P(s,L) representing the ava
lanche size PDF. To the contrary, in the BTW, asn in-
creases,ss,n(q) varies and moves gradually towards the a
propriatess(q) ~Fig. 4!.

The result for theM can be explained on the basis of th
fact that PDF’s of independent variables, satisfying a sca
ansatz of the type~6!, have a spectrum which does n
change under convolution@17#. For example, if we put
Pw(s5La,L);L f w(a)2a, where f w is the spectrum of the
wave size PDF, one can verify that

FIG. 3. Plots ofF(t,L52048) for the BTW~continuous! and
the M ~dashed, slope50.5!.
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P~2!~La,L !5E d~Lb!Pw~La2Lb,L !Pw~Lb,L !;L f w~a!2a.

~8!

Thus, also the spectrum associated withP(n)(s,L), which is
the convolution ofn Pw’s, does not depend onn. This im-
plies then-independence ofss,n(q), which is determined
once f w is given. Now, letP(s,m,L) be the probability of
having an avalanche withs topplings andm waves: due to
the uncorrelated character of different wave sizes, for theM
P(s,m,L) is also the convolution of m Pw’s, i.e.,
P(s,m,L)
5P(m)(s,L). Therefore, ifP(m,L) is the PDF of the total
number,m, of waves in an avalanche, one has

P~s,L !5(
m

P~m!~s,L !P~m,L !, ~9!

such that

Lss~q!;(
m

Lss,m~q!P~m,L !, ~10!

which, together with the above results, implyss,n(q)
5ss(q). The coarse graining of waves in theM does not
modify the block PDF spectrum, which is from the start at
fixed point, representing also the scaling of avalanches.

In the BTW case, the nontrivial composition of correlat
waves is responsible for the change withn of the effective
singularity spectrum ofP(n) ~Fig. 4!. For n51, the simple
linear FSS formf w(a)52(tw21)a(aP@0,Dw#) applies,
while for n→` one should recover the nonlinear for
needed to describe the complex scaling ofP(s,L) @4#. In
practice, sampling limitations prevent us from reaching ve
high n. However, even if convergence is relatively slow, t
tendency ofss,n(q) to move towardsss(q) is very manifest.
We could clearly detect the increase withn of the gap
dss,n(q)/dq, at fixed highq: for example, we determined
dss,n(4)/dq.2.00,2.20,2.25,2.38, forn51,8,12,24, respec
tively. Furthermore, while the asymptotic gap forPw(s,L)
gets readily to the maximum value, i.e.,dss,1(q)/dq52 for
q>1, as soon asn.1 a constant gap could not be detect

FIG. 4. ss,n(q) for the BTW,n51, 8, 24~open circles, from the
bottom!. The closed circles showss(q).
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for ss,n(q); this confirms the progressive appearance of
fective multifractal scaling for the block variable.

As the above discussion shows, the mere fact that wa
in the M can have multiple topplings like avalanches, is n
enough to ensure that wave and avalanche scalings are
tical. There is an infinite average number of waves per a
lanche in theL→` limit. Thus, if also for theM the auto-
correlationC would be long range, this identity would not b
guaranteed.

In summary, the above SOC models present two radic
different time correlation patterns, which should be pro
typical for avalanche dynamics. In theM different waves are
always uncorrelated, even within the same avalanche. T
the PDF of wave sizes, satisfying FSS, coincides with tha
avalanche sizes, as far as exponents are concerned. T
contrary, in the BTW long time correlations substantia
modify the scaling of waves under coarse graining, determ
ing also a multifractal avalanche distribution@18#. Successful
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approaches to avalanche scaling should be naturally base
a correct understanding of the link with waves, wherev
they can be defined. In such a perspective, our results alre
give novel insight into the BTW in 3D. Unlike its 2D coun
terpart, this model has avalanches constituted by a finite
erage number of waves forL→`. Since, as we found, wave
correlations cannot propagate outside the same avalan
this suggests that they are, if notd-like as in theM, at most
short range. According to our results, one should then exp
the avalanche size distribution to scale with the same exa
known exponents as the wave one. Indeed, numerical de
minations for the BTW in 3D are strikingly compatible wit
this conjecture@10#.
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